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Abstract A maximum-likelihood approach is used in 
order to estimate recombination fractions between mar- 
kers showing segregation distortion in backcross popu- 
lations. It is assumed that the distortions are induced by 
viability differences between gametes or zygotes due to 
one or more selected genes. We show that Bailey's (1949) 
estimate stays consistent and efficient under more gen- 
eral assumptions than those defined by its author. This 
estimate should therefore be used instead of the classical 
maximum-likelihood estimate. The question of detec- 
tion of linkage is also discussed. We show that the order 
of markers on linkage groups may be affected by segre- 
gation distortion. 

Key words Genetic mapping �9 Segregation 
dis tor t ion .  Maximum-likelihood.  L inkage .  
Molecular markers 

Introduction 

Segregation distortion is a problem often encountered in 
mapping studies (Wendel and Parks 1984; Torres et al. 
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1985; Lyttle 1991; Sch6n et al. 1991; Zivy et al. 1992). It 
has been shown that the analysis of linkage may be 
influenced by deviations of single-locus segregation ra- 
tios from expected frequencies, and several authors have 
discussed methods to test for linkage or to estimate 
recombination frequencies between genes showing seg- 
regation distortion (Bailey 1949; Garcia-Dorado and 
Gallego 1992). 

The most common disturbances to the expected 
frequencies of the phenotypic classes (1:1 : t : 1 for a 
backcross) are caused by: (1) linkage between the two 
loci, and (2) upsets in the formation or function of 
gametes or zygotes, leading to differential viability. A 
third source of disturbance is constituted by failures of 
manifestation that lead to assigning a proportion of 
individuals to phenotypic classes inappropriate to their 
genotypes; this effect cannot be met with molecular 
markers, apart from mistyping errors. Linkage can be 
distinguished from differential viability because it 
upsets the joint distribution without affecting the single- 
marker ratios. 

The subject of this paper is to extend some of the 
pre-cited methods which were developed for genes to 
molecular markers, since the markers are not directly 
affected by viability effects, but show significant devi- 
ations in their segregation ratios, due to their linkage to 
genes affected by differential viability. 

For backcrosses, Bailey's (1949) method can be used 
for dominant or codominant markers to estimate re- 
combination fractions, since in both cases the four 
classes can be distinguished. We show here that this 
method often leads to a consistent and efficient estimate 
of the recombination frequency between two markers, 
even when these markers are not located on the genes 
that cause segregation distortion. An estimate is consist- 
ent, or asymptotically unbiased, if it converges to the 
"true" value of the parameter as the population size 
increases. It is efficient if no other estimate has a smaller 
variance. The bias of the classical estimate is derived in 
several cases of selection, in order to compare it with the 
standard error of Bailey's estimate. 
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Two-point models 
The resolution of (2) gives the efficient estimate (Bailey 
1949) 

Estimation of linkage 

It is easy to show that when an allelic form at only one 
locus affects viability, then the best estimate ofr is simply 
the classical estimate, which is the ratio of the number of 
recombinant individuals over the total number. In this 
case of selection, the proportionality between the ex- 
pected frequencies of the parental and recombinant 
classes remains the same. Now, consider a coupling 
mating of the type AB/ab x ab/ab, involving two 
markers A and B, exactly located on two genes, both 
affected by independent selections. This mating gives 
rise to four kinds of offspring, which are phenotypically: 
AB, ab (parentals) and Ab, aB (recombinants). Then, 
consider that the viability of A phenotypes relative to a 
is u, and that the viability orB phenotypes relative to b is 
v, with 0 < u < + 0% and 0 < v < + 0% using Bailey's 
(1949) notations. The case u = v = 1 is that of no selec- 
tion, i.e., Mendelian segregation. The recombination 
fraction is r, and the population size is n. The observed 
and expected frequencies of phenotypic classes are given 
in Table 1. Note that gametic and zygotic selection leads 
to the same result in backcrosses, since the four 
phenotypic classes correspond to the four gametic types 
produced by the heterozygous parent. 

When u and v are different from one, then the log- 
likelihood is, omitting an irrelevant constant, 

L = (a + d)log(1 - r) + (b + c)logr + (a + b)logu 

+ (a + c)logv - nlog[(uv + 1)(1 - r) + (u + v)r]. (1) 

L is maximized when r, u and v are replaced by their 
maximum-likelihood estimates (MLEs), obtained by 
partially deriving L: 

OL a + d  b + c  u + v - u v - 1  
- - - + - -  n = 0  

dr r -  1 r D 
#L a + b  v - r v + r  

- -  - n - 0 (2) 
~ ? u -  u D 

8L a + c  u - r u + r  
/'~ = 0 .  

~ v -  v D 

Table 1 Expected and observed frequencies for a backcross in coup- 
ling, involving two genes, A and B, selected with intensities u and v. 
Fo r  matings in repulsion, r is replaced by 1 - r. 

Phenotypes  A B  A b  aB  ab 

Expected uv(1 - r) ur vr (1 - r) 
n - -  n - -  F l - -  g l - -  

D D D D 

Observed a b c d 
frequencies 

O = (uv + 1)(1 - r) + (u + v)r 

r " -  ?a-3 (3a) 

and 

~ =  a N / ~ 3 =  a~. (3b) 

In practical situations, (3a) will be undefined if one of 
the observed frequencies is zero. Nevertheless, this prob- 
lem is circumvented by solving (2) iteratively, e.g., by the 
Newton-Raphson's algorithm (see Edwards 1972). 

Replacing the observations by their expectations, the 
asymptotic variance of the estimate (3a) can be ex- 
pressed in a slightly different form than that given in 
Bailey (1949): 

Ve, = r(1 - r)[(uv + 1)(1 - r) + (u + v)r] 

[(uv + 1)r + (u + v)(1 - r)]/4nuv. 

Fig. la  shows the value of the asymptotic standard error 
se, = x/-V~e~ ofr~, a function of r, u and v, for a backcross of 
100 individuals (if the population size is n, s~, is obtained 
by multiplying the values of Fig. la by ~ ) .  For u 
and/or v = 1, seo is equal to the standard error of the 
classical estimate s~, = x/r(1 - r)/n. It appears that se, is 
considerably increased for strong values of selection. To 
appreciate the pertinence of using Bailey's estimate in- 
stead of the classical estimate, we can compare se, to the 
asymptotic bias, Be, of the classical estimate. This bias is 
obtained by replacing b and c by their expectations in 
the estimate, and then subtracting the "true" value of r, 
giving 

B~ - (u + v)r  D r. (4) 

Fig. lb shows the value of Be, as a function of r, u and v. 
The comparison of Fig. la  and b clearly indicates that s~B 
is in all cases lower than the absolute value of B~, 
indicating that it is always advantageous to use Bailey's 
estimate for this model of selection. 

After studying the estimation of linkage with segrega- 
tion distortion, we now discuss the detection of linkage, 
which is directly related to its estimation. 

Detection of linkage 

Several methods exist to detect the existence of linkage 
between two loci. The Z 2 and the LOD score tests are 
very frequently used, and are asymptotically equivalent. 
In order to study the effects of segregation distortion on 
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Fig. la,b Estimation of the recombination fraction, r, between two 
markers selected with intensities u and v for a backcross, a Asymptotic 
standard error of Bailey's estimate, against r, for a population size of 
100 individuals, b Asymptotic bias of the classical estimate against r 
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the accuracy of the detection of linkage, one can derive 
the E L O D  (for expected L O D  score), i.e., the weighted 
average of the L O D  scores calculated for each possible 
ou tcome in a given population.  For  a backcross, the 
L O D  score evaluated at f, the M L E  of r, is equal to 

~n [log(2) + f log(f)  + (1 - f)log(1 - f)] if f > 0 
Zmax= [nlog(2) if f = 0 

and the E L O D  is equal to 

segregation distortion may generate false-positive link- 
ages, leading to the aggregation of two or several linkage 
groups. On the other hand, for r ~ 0.5, false-negative 
linkages may appear, leading to the division of a linkage 
group into several groups. Thus, the determination of 
linkage groups may be biased by segregation distortion. 
This effect could seriously reduce the utility of the map, 
for example for detecting QTLs  (quantitative trait loci). 
However,  the L O D  score will be well estimated when 
only one marker  is under selection (data not shown). 

E[Z(f)]  = ~ P(k;r) x Zk(f ) (5) 
k = O  

where k denotes the number  of recombinant  individuals 
in the popula t ion of size n, f is the estimated value of r, 
the Zk(f  ) are the L O D  scores for each outcome k and a 
given value of f, and the P(k;r) are the weights, i.e., the 
probabilit ies of the outcomes k for a given value of r  (Ott 
1985). For  a backcross, the P(k;r) are given by the 
binomial probabilit ies P ( k ; r ) =  C~rk(1--r) "-g. When 
differential viability occurs on the two markers, the 
expected frequency of recombinant  individuals is 
p = (u + v)r/[(uv + 1)(1 - r) + (u + v)r]. Thus, the 
E L O D  can be expressed as 

E[Z(f)]u,v = ~ Cknpa(l _ p)n-k X Zk(f ). (6) 
k=O 

Figure 2 shows the values of E [Z(f)Ju,~, as a function 
of r, u and v, for a popula t ion size of 100 ind,, iduals. We 
see from this figure that, for the tested value of r = 0.5, 
the L O D  score ignoring selection will be overestimated 
when both  markers are under selection. This means that 

Fig. 2 Expected LOD score as a function of the recombination 
fraction, r between two markers selected with intensities u and v 
(backcross population) 
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To circumvent the problem of bias in the detection of 
linkage, it is possible to derive an unbiased LOD score 
test, which takes into account the selection parameters 

Z(rB, ~, ~) = (a + d)log(1 - ~B) + (b + c)log(~B) 

-nl~ fB(~+t~)l (7) 

where @ fi and ~3 are obtained by solving (2) or by using 
(3a) and (3b). Under the null hypothesis (i.e., r = 0.5), this 
test is asymptotically equivalent to the welt-known Z 2 
suggested by Mather (1957) to test the independence of 
tw,o segregations, conditional on the marginal frequen- 
cies (one degree of freedom). A simple formula for this 
test is 

n ( a d -  bc) z (8) 
Z2 = (a + b)(a + c)(b + d)(c + d)" 

due to their linkage to two genes, A and D, both affected 
by a gametic or a zygotic selection u and v, and flanking 

�9 the interval defined by B and C. Let the recombination 
fractions between A and B, B and C, and C and D be rl, 
r 2 and r3, respectively. We can represent this situation 
by the following model 

A B C D 
�9 . . . . . . .  [] . . . . . . .  [] . . . . . . .  �9 

u P 1  r2 r 3 v 

(model 1) 

where [] denotes markers, and (3 denotes the genes 
under selection. Suppose that only the segregations of 
the two markers are observable. Then, the expected and 
observed frequencies of the four classes are those of 
Table 2. Five parameters (rl, re, r3, u and v) have to be 
estimated, but only three degrees of freedom are avail- 
able. We are interested only in estimating re, so we can 
carry out the following convenient transformations 

Note that the deviation at locus B may be simply due to 
its linkage to A. To test the significance of the departure 
of v from unity, Bailey suggests to use the following Z e 
test 

n(ac - b d )  2 (9) 
Z2 = (a + b)(a + d)(b + c)(c + d)" 

This Z e is with one degree of freedom since, of the three 
available, two were used in estimating u and r. 

We now discuss the more general case of the analysis 
of linkage between two markers linked to two selected 
genes but not exactly located on them. 

Four-point models 

Estimation of linkage 

r z = r  

: r 3 -- vr 3 -- t 

fl = u q  -- rl + 1. 

The expected frequencies of Table 2 become 

u +  1) 
f (Bc)= nra~fiD ( 1  fi 

f (bC) = nr 1 
o~ 

f (bc) = n(r - 1)-~. 

Consider two molecular markers, B and C, both show- Let us put 7 = [1 + (v + 1)/el and 6 = [1 - (u + 1)/ill. As 
ing a significant deviation in their segregation ratios, the sum of the expected frequencies is equal to n, i.e., 

Table 2 Expected and observed frequencies for a backcross in coupling, involving two markers,  B and C, flanked by two genes, A and D, 

selected with intensities u and v 

Phenotypes at the four loci Recombinat ion between 
B and C 

ABCD, aBCd, ABCd, aBCD N o  

ABcD, aBcd, ABcd, aBcD Yes 

AbCD, abCd, AbCd, abCD Yes 

AbcD, abcd, Abcd, abcD No 

Expected frequencies 

(r 2 - 1)(v + r 3 -- Vr3)(ur 1 - r 1 --u) 
t/ e 

D a 
r2(r 3 - vr 3 - 1)(ur 1 - r 1 - u) 

f 
D 

r z ( V  + r 3 - -  v r 3 ) ( u r  I - -  r 1 + t) 
n 9 

D 
(r 2 -- 1)(r 3 - -  13/" 3 - -  1)(uq - rl + 1) 

n h 
D 

Observed frequencies 

D = ( u v - u - - v +  1)(qr3--rAD)+uv+ 1 
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otfi[(r - 1)(76 + 1) + r(7 + 6 ) ] / D  = n, we can write 

( r -  1)76 
f ( B C )  = n(r  - 1)(76 + 1) + r(7 + 6) 

r6 
f ( B c )  

n ( r  - -  1)(76 + 1) + r(7 + 6) 

r7 
f ( b C )  

n(r  - 1)(76 + 1) + r(7 + 6) 

(r -  1) 
f ( b c )  = n (r  _ 1)(76 + 1) + r(7 + 6)" 

Table 3 Expected and observed frequencies for a backcross in coup- 
ling, involving two markers,  A and C, flanking a gene, B, selected with 
intensity u 

Phenotypes  Expected frequencies Observed 
frequencies 

ABC, AbC ( 1 -  r O ( 1 -  r2)u + rl r 2 
11 a 

u + l  
ABc, Abc (1 - rl)r2u + rl(1 - r2) 

n b 
u + l  

aBC, abC rl(1 - r2)u + (l - q)r  2 
t/ C 

u + l  
aBc, abc r I r2u + (1 - rl)(1 - r2) 

n d 
u + l  

Then, the number of parameters to be estimated is equal 
to the number of degrees of freedom. Under this condi- 
tion, Bailey (1951) showed that, subject to the condition 
of solubility, the maximum-likelihood estimates of the 
parameters can be obtained by setting the observations 
equal to the expectations 

( r -  1)76 
n(r - 1)(76 + 1) + r(7 + 6) = e 

ra 
= f  n(r - 1t(76 + 1) + r(7 + 6) 

r7 
n(r - 1)(76 + 1) + r(7 + 6) = g 

( r -  1) 
h. 

n(r - 1)(76 + 1) + r(7 + (5) 

Solving this system for r leads to the maximum-like- 
lihood estimate 

,/76 (10t 

which is identical to (3a), and has the same variance since 
7 and 6 are the estimates of u and v. 

However, it can be shown that, if a selected gene is 
located between the markers, then Bailey's estimate is 
biased. This situation is summarized by the model 

A B C 

[] . . . . . . .  O . . . . . . .  [] 
r 1 u r 2 

(model 2) 

where [] denotes markers, and C) denotes the gene 
under selection. When only the segregations of the two 
markers are observable, the expected and observed 
frequencies of the four classes are those of Table 3. The 
asymptotic bias of Bailey's estimate in this situation is 
given by 

, /v  
Br = x/ /~  + x / ~  r 

where a, b, c and d are replaced by their expectations 
(Table 3). Figure 3 shows the values of B~, for the model 
where the selected gene, B, is located exactly midway to 
the two markers, A and B, assuming no interference. 
Note that the classical estimate is consistent in this 
situation, since 

b + c  
- - r l + r 2 - - 2 r ~ r  2 

where b and c are replaced by their expectations. If there 
is no interference, this quantity is equal to the recom- 
bination fraction between A and C. In practice, the 
failure of Bailey's estimate in this model should not 
seriously affect linkage analysis: consider a linkage 
group with m markers, defining m -  1 intervals, and 1 
selected linked genes, with no more than one gene per 
interval. Suppose that the order of markers is known. 
Then, if we use Bailey's estimate, m - 1 - 1 recombina- 
tion fractions will be well estimated, and I will be biased. 
If the classical estimate is used, any recombination 
fraction of an interval located between the genes will be 
biased. If we assume that the number of selected genes 
per linkage group is relatively small, Bailey's estimate 
will on average, provide, better estimates of the distances 
than the classical estimate. We therefore suggest the use 
of Bailey's estimate when several markers on a linkage 
group show segregation distortion. 

Detection of linkage 

In the previous section, we have shown that for a 
majority of situations, represented by model 1, Bailey's 
estimate is consistent and efficient. Since this estimate is 
based on the expected frequencies which take into ac- 
count the selection parameters u and v, it is directly 
related to the LOD score Z(f', t/, 0) (equation 7), or to the 
Z 2 test of independence defined by Mather (equation 8). 
Consequently, these two linkage tests can still be used 
under model 1. 
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For  model 2, it can be shown that both tests are 
unbiased under the null hypothesis of independence (i.e., 
r = 0.5). This result is not surprising because Bailey's 
estimate is not  biased for r = 0.5 (Fig. 3). Therefore, 
either one or the other test can be used under very 
general conditions to detect linkage. 

Ordering markers 

The accuracy of any maximum-likelihood method of 
ordering loci (see, for example, Lander  and Green 1987; 
Lathrop and Lalouel 1988) is directly related to the 
quality of the estimation of the recombination frequen- 
cies. Since the algorithms usually used to estimate these 
frequencies do not take into account the possibility of 
segregation distortion, it is necessary to study if such 

O u = l  o u = 1 0  .... I u = 1 0 0  [ 
I 

[] u = 5  • u = 0 , 1  , ,  A u = 2  I 
0 .3  1 
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0.25 
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._ 
....% 
.~ 0 . 1 5  

0.1 

~: 0.05 

0 

-0.05 ~ i 
0 0.1 0 . 2  0 .3  0 . 4  0 . 5  

r 

Fig. 3 A s y m p t o t i c  bias  of  Bailey's es t imate  of  the  r e c o m b i n a t i o n  
fract ion,  r, be tween  two  m a r k e r s  f lanking a gene selected wi th  inten-  
sity u (backcross  p o p u l a t i o n ,  n = 100) 

disturbances can affect the determination of the order of 
the markers of a linkage group. 

Consider three linked markers A, B and C. Let us call 
rl, r 2 and r 3 the three recombination fractions between 
A and B, B and C, and A and C, respectively. Suppose 
that A and B are exactly located on two selected genes, 
and let u and v be the selection parameters of these two 
genes. Assuming no interference, the likelihoods of the 
three orders can be expressed as 

eL(ABC) = [(1 - rl)(1 - r2)](a+b)[(1 -- rl)r2] (c+a) 

X [ - r l ( 1  - -  r2)](e+f)[rlr2](o+h)u(a+c+e+o)v(a+c+f+h)/Dn 1 
(11) 

e L ( A C B )  = [ (1  - r 3 ) ( 1  - r 2 ) ] ( a + b ) [ - ( 1  - -  r 3 ) r 2 ]  (~ 

X J r 3 ( 1  - -  ra)](e+f)[r3r2](c+a)u("+c+e+~ 
(12) 

eL(BAC) = [(1 - rl)(1 - r3)] (a+b) [-(1 - rx)r3] (c+a) 

x [r 1 (1 - r3)] (g+h) [r,  r3](e+f)u(a+c+e+g)V (a +~+f+h)/D] 
(13) 

where all parameters are replaced by their estimates, and 
where D 1 = 1 + u v + r l ( u + v - u v -  1), D 2 = ( 1  - - r  2 - -  

r 3 + 2rzr3)(uv + 1) + rl(u + v), and D 3 = D 1. Putting an 
additional selection parameter, w, on marker  C allows 
us to suppose that the two selected genes are on two 
adjacent markers, or alternatively on the two bordering 
markers. This leads to the observed and expected fre- 
quencies of Table 4, for the three possible orders ABC, 
ACB and BAC. The L O D  score which tests the relative 
likelihoods of two orders is defined as the loga0 of the 
ratio of the corresponding likelihoods, which are ex- 
pressed in a similar manner  to (11), (12) and (13). If 
u = v = w = 1, the L O D  scores are simply the classical 
LODs. If only one parameter is different from one, the 
classical estimates of the recombination fractions stay 
consistent. Consequently, the L O D  scores are un- 
changed, meaning that a single selected gene does not 

Table  4 Expec ted  a n d  obse rved  f requencies  for a backc ross  in coupl ing,  involv ing  three  marke r s ,  A, B and  C, which  are  u n d e r  selection of 
intensit ies u, v and  w. All expected f requencies  have  to be mul t ip l ied  by  n, the  p o p u l a t i o n  size 

P h e n o t y p e s  Expec ted  f requencies  Expec ted  frequencies  Expec ted  f requencies  Ob se rv ed  
(order  ABC)  (order  ACB)  (order  BAC) frequencies  

A B C  uvw(1 - q ) ( 1  - r 2)/ D 1 uvw(1 - r3)(1 - r z)/ D a uvw(1 - q ) ( 1  -- r 3)/ D 3 a 
abc (1 - rl)(1 - rz)/D 1 (1 - r3)(1 - r2)/Dz (1 - q ) ( 1  - r3)/D 3 b 
ABe  uv(1 - r Orz /D 1 uvrar2/D 2 uv(1 - r l)r3/D 3 c 
abC w(1 - rl)r2/D1 wr3r2/D2 w(1 -- rl)r3/D 3 d 
Abe ur 1 (1 - rz)/D 1 ur 3 (1 - rz)/D 2 u q  r3/D 3 e 
aBC vwrl(1 - r2)/Ol vwr3(1 -- r2)/02 vwqra /D3  f 
A b C  uwrlr2/D1 uw(1 - r3) r J D  2 uwr 1 (1 - r3)/D 3 9 
aBc vrlr2/D1 v(1 -- r3)r2/D 2 vrl (1 -- r3)/D 3 h 

D 1 = (1 - rl)(1 - r2)(uvw + 1) + r l (1  - r2)(u + vw) + (1 - rl)r2(w + uv) + r l r2 (v  + uw) 
O 2 = (1 - rz)(1 - ra)(UVW + 1) + r2(1 - r3)(v + uw) + (!  - r2)r3( u + vw) + r g 3 ( w  + uv) 
D 3 = (1 -- rx)(1 -- r3)(uvw + 1) + r 1 (1 -- r3)(v + uw) + (1 -- rl)r3(w + uv) + r 1 r3(u + vw) 



Table 5 Expected L O D  scores compar ing the orders of three 
markers,  A, B and C. E [Z] :  E L O D s  calculated under hypothesis of 
no distortion; E[Z(u,v,w)]: E L O D s  under hypothesis of selection 
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on markers  A and B (w = 1) or A and C (v = 1). The values are 
calculated for r 1 = r 2 = 0.1 and for n = 100 

u v W E [Z]  E [Z]  E [Z]  E [Z(u, v, w)] E [Z(u,v,w)] E [Z(u, v, w)] 
ABC/ACB ABC/BAC BAC/ACB ABC/ACB ABC/BAC BAC/ACB 

1 1 1 6.35 6.35 0 6.35 6.35 0 
10 10 1 11.18 1.58 9.61 3.05 4.51 - 1.46 
20 20 1 12.31 0.81 11.49 2.01 6.12 -4 .11  

100 100 1 13.60 0.17 13.43 0.54 11.47 - 10.92 
10 0.1 1 0.63 14.87 - 14.24 12.45 16.37 - 3.91 
20 0.05 1 0.02 15.94 - 15.92 13.43 19.77 - 6.34 

100 0.01 1 4.44 8.87 - 4.42 7.10 19.90 - 12.79 
10 1 10 1.29 1.29 0 3.68 3.68 0 
20 1 20 - 0.20 - 0.20 0 3.29 3.29 0 

100 1 100 - 2.04 - 2.04 0 2.96 2.96 0 
10 1 0.1 4.77 4.77 0 13.03 13.03 0 
20 1 0.05 - 1.08 - 1.08 0 16.15 16.15 0 

100 1 0.01 - 17.48 - 17.48 0 20.57 20.57 0 

modify the determination of order. On the other hand, if 
two parameters are different from one, then the classical 
estimates of the recombination fractions are severely 
biased, whereas Bailey's estimates are rarely biased; for 
example, if u and v are different from one, the following 
conclusions can be shown: 

if the classical estimates are used, then: 
71 will be biased for all three orders, 
72 will be biased if the order is BAC or ACB, 
73 will be biased if the order is ABC or ACB. 

if Bailey's estimates are used: 
71 will be consistent for all three orders, 
72 will be biased if the order is BAC, 
73 will be biased if the order is ABC. 

The behavior of the LOD scores can be studied by 
calculating their values, the ELODs, when the observa- 
tions (a to h) are replaced by their expectations. Table 5 
shows the values of ELODs for r I = r 2 -----0.1, assuming 
that the true order is ABC. The E [Z] are the expecta- 
tions of the classical LOD scores, using the classical 
estimates of the recombination fractions. The E[Z(u, 
v, w)] are the expectations of the LOD scores computed 
with formulas analogous to (11), (12) and (13), based on 
the expected frequencies of Table 4, and with Bailey's 
estimates of the recombination fractions. ELODs are 
given for different values of u, v and w, and for a 
population size of 100. The first line of Table 5 indicates 
the values of ELODs when no selection occurs (u = v = 
w = 1), while the other lines give the values for several 
models of selection. This table clearly indicates that 
when severe selection occurs on the two bordering 
markers, A and C, the signs of the classical LOD scores 
may be inverted, leading to false conclusions about 
order. On the other hand, the signs of the LOD scores 
using Bailey's estimate are not inverted. Therefore, the 
calculation of the likelihoods of the orders in case of 
segregation distortion should use Bailey's estimate, in 
conjunction with formulas taking into account the selec- 

tion parameters. If ?B is not defined, due to the nullity of 
one recombinant class, then systems equivalent to (2) 
have to be solved iteratively. 

Discussion 

Maximum-likelihood estimates were derived for a two- 
point analysis of the recombination fraction in case of 
segregation distortion, for backcross populations. Their 
properties and usefulness are discussed below. 

When segregation distortions are observed on two 
linked markers, we do not know if these distortions 
are due to their linkage with one or several selected 
genes. Tests such as (9) can be used in order to answer 
this question. If it has been found that only one selected 
gene is present, it is not necessary to use Bailey's esti- 
mate. Nevertheless, this estimate remains fully efficient 
even when no, or one, locus is selected. Moreover, 
Bailey's estimate was shown to be more often consistent 
than the classical estimate, even when the markers are 
not located on the genes selected. Hence, Bailey's esti- 
mate will have to be used for all linkage analyses and 
order determinations with segregation distortions in 
backcross populations. It should be noted that other 
types of selection may occur, where the rows or columns 
of the 2 x 2 contingency table are not entirely selected, 
but only for certain genotypes. These other types of 
selection could be due to epistatic effects such as comple- 
mentary genes. For example, only the aabb genotypes 
may be in disfavor. In such cases, Bailey's estimate 
and Mather's 7~ 2 are biased. As a great number of such 
cases may occur, it would be very cumbersome to test 
for each possible model of selection. Moreover, the 
number of degrees of freedom available (three) would 
be insufficient to estimate r in certain cases. It can 
be shown that the Z 2 which tests the independence of 
two loci (Mather 1957) is not usable in such cases; thus, 
new methods have to be developed. A possible method 
of investigation in these cases is to take into account the 
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prior probability of linkage, i.e., Bayesian estimates 
(Neumann 1990). 
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